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Abstract: - This research presents VLSI architecture for image segmentation. The architecture is based on the 
fuzzy c-means algorithm with spatial constraint for reducing the misclassification rate. In the architecture, the 
usual iterative operations for updating the homogeneus membership matrix and cluster centroid are merged into 
one single updating process to evade the large storage requirement. In addition, an efficient pipelined circuit is 
used for the updating process for accelerating the computational speed. Experimental results show that the 
proposed circuit is an effective alternative for real-time image segmentation with low area cost (time) and low 
misclassification rate. 
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1 Introduction  
Breast cancer is the commonest cancer among 
Malaysian women in all ethnic groups [1]. A 
woman in Malaysia has 1 in 20 chance of getting a 
breast cancer in her lifetime. According to the 
National Cancer Registry, the Age Standardized 
Rate (ASR) of female breast cancer in Malaysia is 
47.4 per 100,000 populations in 2003 to 2005 and 
this dropped to 39.3 in 2006. However, the ASR is 
higher than those in other Asian countries (Beijing, 
24.6, Hiroshima 36.6, Chennai 23.9 and Seoul 20.8) 
[1]. There are variations in the incidence rates of 
breast cancer among the three main ethnic groups in 
Malaysia. Amongst the Chinese, the ASR is highest 
at 59.9 per 100,000 population, for the Indians, the 
ASR is 54.2 per 100,000 and it is lowest in the 
Malays at 34.9 per 100,000 population. Breast 
cancer accounted for 31.3% of the total number of 
the new cases in women [1]. These differences may 
be attributed to the differences in lifestyle, diet and 
reproductive behavior namely those that relates to 
childbearing and breastfeeding practices. 

Studies on breast cancer have been approached for 
many years from different angles of importance; be 
it the cause of the disease, the detection of the 
disease, the diagnosis systems, method of treatments 
before and after surgery. These studies have been 
divided into two paradigms, one which defines 
breast cancer disease as a local and regional disease; 
and another as a systematic disease. The role of a 
surgeon alone is adequate for the breast cancer that 
is initially at a local and regional disease process. 
However, when the breast cancer is a systematic 
disease then the involvement of systematic 
treatments is needed besides the surgery alone to 
cure it and there will be a role for earlier detection 
of breast cancer. 

Breast cancer screening programs attempt to detect 
and eradicate cancer at the earliest possible stage to 
increase the rate of survival amongst women. The 
early detection of breast cancer greatly improves the 
prognosis. One of the earliest signs of cancer is the 
formation of clusters of micro-calcifications.  
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Although clinicians have in the past been reluctant 
to use computational approaches in diagnostic 
applications, it is now considered that the use of 
advanced high performance methodologies will be 
useful in aiding clinicians in diagnosis and treatment 
planning. At present, segmentations are mainly 
consulted manually by medical specialists. Although 
this task appears simple, the reality is that an in-
depth knowledge of anatomy and physiology is 
required. Essentially, the expert observes a 
particular image, determines borders between 
regions and classifies each region.  

In addition to this, to identify smaller image 
features, contrast modifications are often needed. 
Although, for a typical data, the entire expert 
manual segmentation can take several hours to 
compute, this approach is perhaps the most reliable 
and accurate method of medical image 
segmentation. This is due to the immense 
complexity of the human visual system, a system 
well suited to this task. This rise an opportunity for 
us to develop hardware for prospectively evaluated 
a computer-aided detection (CAD) device used with 
data from mammography by assessing breast 
cancers detected; tumor sizes, histology, and stage. 
Insight acquired through this research is expected to 
be useful for the development hardware, which is 
identified breast cancer to be relevant to bio-medic 
engineering problem solving. 

Given the massive volumes of mammography image 
data to be processed, and the considerable 
computational complexity of the algorithms that are 
involved, it is clear that scheme can be put to 
efficient practical use only if efficient hardware co-
processing strategies are developed. The appearance 
of fast reconfigurable field programmable gate 
arrays (FPGAs) brings about a new path for the 
design of such systems. FPGAs can perform 
mathematical operations on an entire vector or 
matrix at the same time, and the current generation 
of DSP-capable FPGAs yields ultra-high 
performance and highly flexible signal-processing 
systems. FPGA-based implementation also has the 
advantage of short design period and low cost of 
fabrication, which are suitable for partial or 
complete acceleration of various algorithms. These 
factors make FPGAs an attractive platform for 
implementing the proposed segmentation system. 
However, the FPGAs present limited resources to 
implement complex hardware. Hence multiple 
FPGA board solutions or run-time context switching 
techniques provide the possibility of implementing 
such complex system by using time multiplexing 

strategies. To ensure system integration and tight 
coupling between software processing and hardware 
acceleration using FPGAs, it is essential to develop 
suitable host applications that can be used for the 
co-design process. 

Image segmentation plays an important role in 
computer vision and image analysis. The 
segmentation results can be used to identify regions 
of interest and objects in the scene, which is very 
beneficial to the subsequent image analysis or 
annotation. The fuzzy c-means algorithm (FCM) [2] 
is one of the most-used techniques for image 
segmentation. The accuracy of FCM is due to the 
employment of fuzziness for the clustering of each 
image pixel. This enables the fuzzy clustering 
methods to retain more information from the 
original image than the crisp or hard segmentation. 
Although the original intensity-based FCM 
algorithm functions well on segmenting most noise-
free images, it fails to segment images corrupted by 
noise, outliers and other medical imaging. The FCM 
with spatial constraint (FCM-S) algorithms [3] – [5] 
have been proposed to solve this problem by 
incorporating spatial information into original FCM 
objective function. However, as compared with the 
original FCM algorithm, the FCM-S algorithms 
have higher computational complexities for 
membership coefficients computation and centroid 
updating. In addition, similar to the original FCM 
algorithm, the size of homogeneus membership 
matrix grows as the product of data set size and 
number of classes in the FCM-S. As a result, the 
corresponding memory requirement may prevent the 
algorithm from being applied to images with high 
dimension. 

To accelerate the computational speed and reduce 
the memory requirement of the original FCM, a 
number of algorithms [6] – [9] have been proposed. 
These fast algorithms can be extended for the 
implementation of FCM-S. However, most of these 
algorithms are implemented by software, and only 
moderate acceleration can be achieved. In [10] – 
[12], hardware implementations of FCM are 
proposed. Nevertheless, the design in [9] is based on 
analog circuits. The clustering results therefore are 
difficult to be directly used for digital applications. 
Although the architecture shown in [11] adopts 
digital circuits, the architecture aims for applications 
with only two classes. In addition, it may be 
difficult to extend the architecture for the hardware 
implementation of FCM-S. The architecture 
presented in [12] operates with only a fixed degree 
of fuzziness m = 2 for the original FCM. The 
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flexibility for selecting other degrees of fuzziness 
may be desired to further improve the FCM 
performance. In addition, similar to [11], the 
architecture presented in [12] cannot be directly 
used for the hardware implementation of FCM-S. 

The architecture relaxes the restriction on the degree 
of fuzziness. The relaxation requires the 
employment of n-th root and division operations for 
membership coefficients and centroid computation. 
A pipeline implementation for the FCM-S therefore 
may be difficult. To solve the problem, in the 
proposed architecture, the n-th root operators and 
dividers are based on simple table lookup, 
multiplication and shift operations. Efficient 
pipeline circuits can then be adopted to enhance the 
throughput for fuzzy clustering. 

To reduce large memory size for storing 
membership matrix, the proposed architecture 
combines the usual iterative updating processes of 
membership matrix and cluster centroid into a single 
updating process. In the architecture, the updating 
process is separated into three steps: pre-
computation, membership coefficients updating, and 
centroid updating. The pre-computing step is used to 
compute and store information common to the 
updating of different membership coefficients. This 
step is beneficial for reducing the computational 
complexity for the updating of membership 
coefficients. The membership updating step 
computes new membership coefficients based on a 
fixed set of centroids and the results of the pre-
computation step. All the membership coefficients 
associated with a data point will be computed in 
parallel in this step. The computation time of the 
FCM-S therefore will be effectively expedited. 

The centroid updating step computes the centroid of 
clusters using the current results obtained from the 
membership updating step. The weighted sum of 
data points and the sum of membership coefficients 
are updated incrementally here for the centroid 
computation. This incremental updating scheme 
eliminates the requirement for storing the entire 
membership coefficients. 

The proposed architecture has been implemented on 
field programmable gate array (FPGA) devices [13] 
so that it can operate in conjunction with a soft-core 
CPU [14]. Using the reconfigurable hardware, we 
are then able to construct a system on programmable 
chip (SOPC) system for image segmentation. The 
proposed architecture attain lower classification 

error rate in the presence of noise. In addition, 
compared with its software counterpart running on 
the 2.53 GHz Intel Core 2 Duo, our system has 
significantly lower computational time. All these 
facts demonstrate the effectiveness of the proposed 
architecture. 

2 Contributions to the Development 
of c-Means Clustering Models 
Introduction  

We first give a brief review of the FCM algorithm. 
Let X = {x1, ..., xt} be a data set to be clustered by 
the FCM algorithm into c classes, where t is the 
number of data points in the design set. Each class i, 
1 ≤ i ≤ c, is characterized by its centroid vi. The goal 
of FCM is to minimize the following cost function: 
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where ui,k is the membership of xk in class i, and m > 
1 indicates the degree of fuzziness. The cost 
function J is minimized by a two-step iteration in 
the FCM. In the first step, the centroids v1, ..., vc, are 
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After the first step, the membership matrix is then 
fixed, and the new centroid of each class i is 
obtained by 
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A variant of FCM for image segmentation is FCM-
S, whose objective function is [2] 
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where Γ is the set of neighbours associated with xk, 
and the Card(Γ) is the cardinality of the set Γ. The 
parameter α determines the degree of penalty. The 
necessary conditions locally minimizing J are then 
given by 
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The disadvantages of Equations (5) and (6) are the 
high computational complexities for computing ui,j 
and vi. To accelerate the computation, observe from 
(3) that by simple manipulation, 
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Note that kx  can be computed in advance, and the 
minimization of J in Equation (4) is equivalent to 
the minimization of the following cost function. 
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Necessary conditions on ui,j and vi for locally 
minimizing J can be derived are follows. 
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The FCM and FCM-S algorithm requires large 
number of floating point operations. Moreover, from 
Equations [15], [16], [17] and [18], it follows that 
the membership matrix needs to be stored for the 
computation of cost function and centroids. As the 
size of the membership matrix grows with the 
product of t and c, the storage size required for the 
FCM may be impractically large when the data set 
size and/or the number of classes become high. 

The pre-computation unit is used for reducing the 
computational complexity of the membership 
coefficients calculation. Observe that ui,k in 
Equation (2) can be rewritten as  
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Given xk and centroids v1, ..., vc, membership 
coefficients u1,k, ..., uc,k have the same Pk. Therefore, 
the complexity for computing membership 
coefficients can be reduced by calculating Pk in the 
pre-computation unit. Without loss of generality, the 
degree of fuzziness m can be expressed as 
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where both a and b are integers. Because m should 
be larger than 1, it follows that a > b > 0. Let 
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We then can rewrite Equation (13) as 
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Based on Equation (16), we see that the n-th root 
operation is required for the implementation of pk. 
In the proposed architecture, a novel n-th root 
circuit is adopted so that Pk can be implemented in a 

pipelined fashion. In the proposed n-th root circuit, 

the goal is to compute n Y , where 
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That is, Y is a 2q-bits real number such that 1 < Y < 
2. We separate Y into two portions Yh and Yl as 
shown below 
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For the sake of simplicity, we first consider the 

computation of Y . Observe that 
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By retaining the first two terms of the Taylor series, 

Y can be approximated by 
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From Equations (17) and (18), we conclude that Yh 
> 2qYl. Therefore, the maximum error of the 
approximation is less than 2−2q. Following the same 
procedure, it can also be found that 
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These results can be extended for any n ≥ 2 as 
follows: 
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The n-th root circuit based on Equation (19) is 
shown in Figure 2, which consists of two tables, two 
multipliers, and one adder. The tables store 
( ) nYn l /1−  and nn

hY /)12( −  for all the possible values 

of Yl and Yh. Although it is possible to construct a 

table directly for n Y , the number of entries in the 
table would be 22q−1 because Y contains 2q bits. By 
contrast, both Yh and Yl consist of only q bits. The 
number of entries in each table shown in Figure 2 is 
only 2q−1. Consequently, the proposed circuit is able 
to perform fast and accurate computation while 
maintaining low area cost. 

 

Fig. 1: The architecture of n-th root unit. 

3.0 The Proposed Architecture  

The goal of the proposed architecture is to 
implement the FCM-S algorithm in hardware. 
The architecture is based on a novel pipeline 
circuit to provide high throughput for fuzzy 
clustering. It is also able to eliminate the 
requirement for storing the large membership 
matrix for the computation of cost function and 
centroids. 

 

3.1. FCM-S Architecture 

The goal of the mean computation unit is to evaluate 

the mean value kx  defined in Equation (8). The 
main architecture of FCM-S is the fuzzy clustering 
unit, which computes the membership coefficients 
and centroids of FCM-S. Therefore, our discussion 
in this subsection will focus on the fuzzy clustering 
unit of the FCM-S. Using Equations (14) and (15), 
we can rewrite the membership coefficients of 
FCM-S defined in Equation (10) as 
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Similar to the original FCM, it follows from 
Equation (24) that the computation of Pk can also be 
separated into c terms, where the j-th term involves 
the computation of (||xk − vj||

2 + α|| k − vj||
2)−r/n. 

Figure 9 shows the architecture for the computation 
of each (||xk − vj||

2 + α|| k − vj||
2)−r/n. From Figure 9, 

we see that the architecture can also be implemented 
as a 4-stage pipeline, similar to that shown in Figure 
3(b) for computing (||xk − vj||)

−2r/n. Therefore, the 
pre-computation unit for FCM-S can be realized as a 
4c stage pipeline. 
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Fig. 2: The FCM-S architecture. 

 

 

 

The only difference is that the first stage of the 
pipeline in Figure 3 has higher area and 
computational complexities. There are two squared 
distance calculation units and one adder at the first 
stage of the pipeline in Figure 3.  

 

 

 

 

 

 

Figures 4 – 6 depict the architecture for membership 
coefficients updating, centroids updating and cost 
function computation for FCM-S based on 
Equations (9), (11) and (23), respectively. Similar to 
the original FCM algorithm, the proposed FCM-S 
architecture computes the centroids and cost  

Fig. 3: The circuit for evaluating nr
jkjk vxvx /

22
)( −−+− α  
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function incrementally. In the FCM-S, the 
incremental centroid for the i-th cluster up to data 
point xk is defined as 
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As shown in Figures 5 and 6, the goals of the 
centroids updating unit and the cost function 
computation unit are to compute vi(k) and J(k), 
respectively. As k = t, the vk(i) and J(k) in Equations 
(25) and (6) will becomes v(i) in Equation (11) and 
J in Equation (9), respectively. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: The circuit for evaluating mkiu ,  for FCM-S. 

Fig. 5: The circuit for calculating vi(k) for FCM-S. 
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Fig. 6: The circuit for calculating cost function J(k) 
for FCM-S. 

We can view the membership coefficients, centroids 
and cost function for FCM-S as the extension of 
those for original FCM by replacing ||xk − vj||

2 with 
||xk − vj||

2 + α|| k − vj||
2. Therefore, the membership 

coefficients updating unit, centroids updating unit 
and cost function computation unit for FCM-S also 
have similar architectures to those of their 
counterparts in original FCM. The circuits in FCM-
S require only additional squared distance unit and 
adder for computing ||xk − vj||

2 + α|| k − vj||
2. 

 

3.6. The SOPC System Based on the 
Proposed Architecture 

The proposed architecture is used as a custom user 
logic in a SOPC system consisting of softcore NIOS 
CPU, DMA controller and SDRAM, as depicted in 
Figure 13. The set of training vectors is stored in the 
SDRAM. The training vectors are then delivered to 
the proposed circuit by the DMA controller. The 
softcore NIOS CPU is running a simple software for 
FCM. It does not participate in the partitioning and 
centroid computation processes. The software only 
activates the DMA controller for the delivery of 
training vectors. The CPU then receives the overall 
distortion of clustering from the proposed circuit 
after the completion of DMA operation. The same 
DMA operation for delivering the training data to 
the proposed circuit will be repeated until the cost 
function J converges. The CPU then collects the 
centroid of each cluster from the proposed circuit as 
the clustering results. 

 

Fig. 7: The SOPC system for FCM-based image 
segmentation. 

4.0 Experimental Results 

This section presents some numerical results of the 
proposed FCM-S architecture for image 
segmentation. The design platform of our system is 
Altera Quartus II with SOPC Builder and NIOS II 
IDE. The target FPGA device for the hardware 
implementation is Altera DE2 board [20].  

For sake of brevity, the images considered in this 
section are gray-level images. Each data point xk 
represents a pixel with gray level values in the range 
between 0 and 255. For color images, each pixel xk 
becomes a vector consisting of three color 
components: red, green and blue. In the proposed 
architecture, each data point xk can be a scalar or a 
vector. Therefore, the proposed architecture can be 
directly applied to color image segmentation by 
implementing xk as a 3-dimension vector. 

The performance of the image segmentation is 
measured by segmentation error rate, which is equal 
to the number of misclassified pixels divided by the 
total number of pixels.  

Section consists in the computing of the percentage 
corresponding to the approximations vectors and the 
details vectors. In the following table are shown the 
computed values of mean coefficients obtained 
using a fuzzy c mean for a malign and a benign case 
sample which taken from MIAS Database. 

WSEAS TRANSACTIONS on COMPUTERS Khairulnizam Othman, Afandi Ahmad

E-ISSN: 2224-2872 193 Issue 5, Volume 12, May 2013



The original MIAS Database (digitized at 50 
micron pixel edge) has been reduced to 200 micron 
pixel edge and clipped/padded so that every image 
is 1024 × 1024 pixels. This is very useful for 
medical research purpose. MIAS Database also 
provides character of background tissue, class of 
abnormality, Severity of abnormality and the 
coordinate and radius for it. 

In the model, the resulting clusters to 7 are 
shown superimposed upon the mammogram data. 
As Fuzzy-C Means is an iterative algorithm, the 
centers of the clusters in new iteration are shown 
using different colors mimic the original image. 
Bold white is the final clustering and previous 
iterations are shown in gray spectrum edited 
mammogram. Although create different coefficients 
in superimposed cluster centers, it does a decent job 
of clustering this data. Besides the clustering created 
in different folder and saved as cluster 0 to 6 (for 
clustering = 7) in PNG format file. The result for 
breast cancer image will be shown in one of the 
crusted image. These improvements in the way we 
image and diagnose breast cancer. Furthermore, it 
helps the radiology and medical personal in their 
daily routine to analysis Breast cancer mammogram. 

Practically speaking, no difficulties have ever 
been encountered, and numerical convergence is 
usually achieved in 10 - 25 iterations. This is 
depending on the grey distribution and the pixel size 
of the image. Whether local minima good clustering 
is another matter, for it is easy to obtain data sets 
upon which kp  minimizes globally with xk visually 

unappealing substructure. To mitigate this difficulty, 
several types of cluster validity functional are 
usually calculated on each µ  produced by FCM. 
Among the most popular are the partition by 
calculation of the centroid of the i-th cluster is 
achieved using equation (26). Result Figure 8 shown 
the iterations over segmentation result that 
computed with out training and supervision. 

 

 

Fig. 8 Experiment mammograms image with 
different input Iterations and end segmentation. 

We evaluated our algorithm on a series of images 
including the ones shown on the right side Figure 8. 
This continued by loading different breast cancer 
diagnosis form MIAS database. To see how our 
algorithm fares it terms of efficiency we conducted 
speed tests for all mammogram in MIAS Database 
by measuring how long they take until the final 
clustering (i.e. until the algorithms have converged). 
In order to arrive at figures which are independent 
of the hardware configured [19], we standardize 
them so that the fast algorithm is assigned by setting 
clustering 7 and iteration 25, produce high accuracy 
and higher precision for the root image created.  
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(a) Original Mammogram     (b) Segmented  

  

(c) Cluster 1    (d) Cluster 2 

  

(e) Cluster 3                         (f) Cluster 4 

  

(g) Cluster 5                         (h) Cluster 6  

 

(i) Cluster 7(Target) 

Fig. 9 (a) is the original Mammogram image and 8 
(b) is the Segmented image. The image is Cluster 
into five dominant regions as shown on 9 (c) -8 (i).  

Result experiment for two different Severity of 
abnormality in breast cancer shown in graph in 
Figure 10 and Figure 11. The result for Benign 
abnormality is 98.4% while Malignant abnormality 
is 97.1%. Experiment conducted by compare the 
original diagnosis region which from MIAS 
Database with the image cluster (the breast cancer 
region).   

Result Segmentation 
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Fig. 10 Result for Benign and Malignant breast 
cancer mammograms image segmented with 
different input Iterations. 
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Fig. 11 Accuracy result for Benign and 
Malignant breast cancer.  

5.0 Concluding Remarks 

The proposed FCM-S architecture has been found to 
be effective for medical image segmentation. To 
lower the segmentation error rate, in the proposed 
architecture, the spatial information is used during 
the FCM training process. The architecture can also 
be designed for different values of degree of 
fuzziness to further improve the segmentation 
results. In addition, the architecture employs high 
throughput pipeline to enhance the computation 
speed. The n-th root circuits and inverse operation 
circuits in the architecture are designed by simple 
lookup tables and multipliers for lowering the 
hardware resource consumption. Early experimental 
results reveal that the proposed architecture is able 
to achieve segmentation error rate down to 5% for 
noisy images. Conduct for future analysis with the 
real Digital Mammogram Machine and this research 
predict much useful for Breast Cancer Prognosis. In 
addition, the SOPC architecture attains speedup up 
to 150 over its software counterpart. The proposed 
architecture therefore is an effective alternative for 
applications requiring real time image segmentation 
and analysis. 
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